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Abstract
We investigate the influence of different spin–orbit couplings on topological
phase transitions in the bilayer Kane–Mele model. We find that the competition
between intrinsic spin–orbit coupling and Rashba spin–orbit coupling can lead
to two dimensional topological metallic states with nontrivial topology. Such
phases, although having a metallic bulk, still possess edge states with well
defined topological invariants. Specifically, we show that with preserved time
reversal symmetry the system can exhibit a 2-metallic phase with spin helical
edge states and a nontrivial 2 invariant. When time reversal symmetry is
broken, a Chern metallic phase could appear with chiral edge states and a
nontrivial Chern invariant.
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1. Introduction

Study of the effects of spin–orbit coupling (SOC) has been a central theme in condensed matter
physics in the past decade. SOC is an essential ingredient in spintronics, which aims to utilize
the electronʼs spin degree of freedom instead of charge for information processing, with the
advantages of smaller size, fast speed and low dissipation. A perhaps more surprising discovery
is that SOC can give rise to new quantum states of matter, e.g. topological insulators that are
bulk insulators characterized by nontrivial topological invariants and gapless surface (or edge)
states. In two dimensions (2D), a topological insulator with time reversal symmetry is also
known as the quantum spin Hall (QSH) insulator [1, 2]. It has an insulating bulk and gapless
spin helical edge states protected by a topological 2 invariant. When time reversal symmetry is
broken, the system may realize a quantum anomalous Hall (QAH) [3–7] insulator with chiral
edge states protected by a so-called TKNN or Chern invariant [8, 9]. Their intriguing properties
have been a subject of intensive investigations in recent years. Experimentally, the QSH effect
has been demonstrated in HgTe/CdTe quantum wells [10, 11] and inverted InAs/GaSb quantum
wells [12–14], and the QAH effect has been demonstrated in Cr-doped (Bi,Sb)2Te3 thin films
recently [15]. These discoveries further stimulate significant interest in searching for new
topological states of matter.

In solid state systems, SOC enters the Hamiltonian in different forms due to different
physical origins. For example, in III–V semiconductor quantum wells, there is Dresselhaus
SOC from bulk crystalline inversion symmetry breaking, and there also exists Rashba SOC
from structural inversion symmetry breaking along the growth direction. The ability to tune the
strength of each individual SOC and control their competition is at the heart of spintronics
applications. In the seminal work by Kane and Mele that proposed the 2D 2 topological
insulator, two types of SOC were considered: the intrinsic SOC and the Rashba SOC [16]. It has
been shown that the intrinsic SOC favors the QSH state while the Rashba SOC tends to destroy
it. Hence their competition determines the topological phase transitions and the phase
boundaries between the topologically trivial and nontrivial insulating states.

The Kane–Mele model was first proposed for graphene. Later studies showed that the
magnitude of intrinsic SOC in graphene is too small for the QSH effect to be detected
experimentally [17–19]. Recently, many new 2D materials have been discovered with enhanced
intrinsic type SOC, such as silicene and germanene [20–25], which are group IV counterparts of
graphene and 2D honeycomb Bi/Sb halides and hydrides. The strength of intrinsic SOC can be
as large as 0.6 eV, as in some Bi halides [26, 27]. This provides promising systems to realize the
Kane–Mele model and the QSH effect at room temperature.

In the study of 2D physics, bilayer systems have attracted a lot of interest. Compared with
single layer systems, the extra layer degree of freedom can lead to many new physical
phenomena and is usually easier to control in practice [28–31]. Furthermore, in terms of
topological properties, bilayer systems can differ qualitatively from single layer systems. For
example, when two single layers of QSH insulator are combined to form a bilayer system, its
2 invariant vanishes and the system becomes topologically trivial. However, when the layer
potential U is finite, a topological state with nontrivial topological invariant can appear [32–34].
As another example, it has been found that the Rashba SOC, which tends to destroy the QSH
phase in a single layer turns out to favor the QSH phase in bilayer graphene [35]. All these facts
indicate that the physics of a bilayer is quite different from the single layer case.
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In this work, motivated by the above mentioned progress, we study the effects of different
SOCs in a bilayer Kane–Mele model, focusing on its topological properties. We find that the
bilayer system exhibits a very rich phase diagram. Quite interestingly, we discover novel 2D
topological metallic phases in this system due to the competition between the intrinsic SOC and
the Rashba SOC: the 2D 2-metallic phase and the Chern metallic phase, depending on whether
time reversal symmetry is broken. In such phases, the bulk band gap is closed indirectly, hence
a topological invariant can still be well defined, and the state is adiabatically connected to a
topologically nontrivial insulator. Like topological insulating phases, the hallmark of the
topological metallic phase is the presence of edge states determined by the bulk topology. For
the 2-metallic phase they are the spin helical edge states, while for the Chern metallic phase
they are the chiral edge states. These findings not only extend our understanding of topological
states of matter but also may find useful applications based on topological materials.

Our paper is organized as follows. In section 2, we describe the bilayer Kane–Mele model
that we study. In section 3, we investigate the case with preserved time reversal symmetry and
show that a metallic phase with well defined 2 invariant and spin helical edge states can be
realized. Section 4 is for the case with time reversal symmetry breaking and we show that there
exists a metallic phase with well defined Chern invariant and chiral edge states. Finally, a
summary of our work is given in section 5.

2. Physical model

The original Kane–Mele model is written for graphene, which has a honeycomb lattice with one
orbital per site and two sites per unit cell. For our bilayer model, we take two AB-stacked
honeycomb lattices, each described by a Kane–Mele model, as shown in figure 1. The total
Hamiltonian of the system can be written as

Figure 1. (a) Structure of the bilayer model with the intralayer (interlayer) hopping
parameter t ( ⊥t ). The A (B) sublattices are indicated by blue (brown) spheres. (b) Top
view of a single layer. dik and dkj are the nearest-neighbor vectors. tI and tR are
respectively intrinsic SOC and Rahsba SOC strengths.
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where H U and H L are the Hamiltonians for the upper layer and lower layer respectively. The
third term is the interlayer coupling. Here, due to the stacking geometry, we only consider the
hopping between the A site of the upper layer and the nearest B site of the lower layer. ⊥t is the
interlayer hopping amplitude. c (c†) is the annihilation (creation) operator for an electron, and h.
c. denotes the Hermitian conjugate. Subscripts i, j label the lattice sites and α is the spin index.
The last term represents an interlayer bias potential with strength U. Each single-layer
Hamiltonian H U(L) is a Kane–Mele model containing the following terms:
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The first term Hhop represents the nearest neighbor hopping term with hopping energy t, which
is used as the energy unit in the following. The second term HISO is the intrinsic SOC involving
the next-nearest neighbor hopping with amplitude tI, ν = × × = ±d d d d/| | 1ij kj ik kj ik , where dlm

is the vector along the bond from site m to a nearest site l. σ σ σ σ= ( , , )x y z is the vector of spin
Pauli matrices. The summation over 〈…〉 〈〈…〉〉( ) runs over all the nearest (next-nearest)
neighbor sites. The third term HRSO is the Rashba SOC with strength tR, and =d d dˆ | |lm lm lm is a
unit vector. The last term Hm represents a spin-splitting from a Zeeman-like coupling with
strength M, which can be induced e.g. by the magnetic proximity effect.

The intrinsic SOC is from the crystalline structure of the honeycomb lattice. For graphene
with a flat planar structure, its value is small because it is a second order process. For a low-
buckling structure in which A and B sites have a relative shift in the out-of-plane direction, the
intrinsic SOC can be greatly enhanced, as in silicene and germanene. Recently, large intrinsic
SOC has been predicted for Bi/Sb hydrides and halides because of the px and py orbital character
of the low energy bands in these materials [26, 27]. The Rashba SOC generally results from the
structural inversion asymmetry along the out-of-plane direction, which may be induced by a
substrate, atom adsorption, or an external electric field along the z-direction.

Here we emphasize that our main objective in this paper is to explore new topological
states of matter. Hence we are trying to take a model which is as simple as possible but still
supports the desired topological states, and we are not aiming to analyze any comprehensive
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models for existing real materials6. In general, there are many possible symmetry-allowed SOC
terms when far-neighbor intralayer and interlayer hopping processes are considered, e.g. as
being studied for the case of bilayer graphene [36, 37]. Here we disregard the far-neighboring
hopping processes and assume that the interlayer coupling is weak. Therefore, we only retain
the two intralayer SOC terms (the intrinsic SOC and the Rashba SOC) in the model which are
needed for realizing the interesting topological metallic phases we discuss below.

As a comment on the symmetry property of our model, we observe that when = =U M 0
the system has both inversion symmetry and time reversal symmetry: the system is a zero gap
semiconductor. A finite U breaks inversion symmetry, while a finite M breaks time reversal
symmetry, leading to symmetry-breaking ground states. This generally opens a bulk gap. In the
following, we shall analyze these symmetry-breaking states in detail.

3. Z2-metallic phase

We first consider the case with preserved time reversal symmetry by setting M = 0. In this case,
the Chern invariant must vanish. However, the system can still have a nontrivial 2 invariant. If
the system has preserved spin component, e.g. with only intrinsic SOC and vanishing Rashba
SOC, the two spin species have opposite Chern numbers. Then the 2 invariant is just equal to
(half) the difference between the Chern numbers of the two spin species σ = ±1z (modular 2).
For the general case with no conserved spin components, the 2 invariant can be computed
using the following formula [38, 39]:

 ∮ ∫π
Ω= −

∂

⎡
⎣⎢

⎤
⎦⎥k A k kk

1
2

d · ( ) d ( ) mod 2, (3)z2
HBZ HBZ

2

where = ∑ 〈 〉A k k ki u u( ) ( )| ( )n n k n is the Berry connection summed over all the occupied
bands, 〉ku| ( )n is the periodic part of the Bloch state for band n. Ω = ×k A( ) ( )z k z is the z-
component of the Berry curvature. HBZ denotes half of the Brillouin zone, and the line integral
is along the boundary of the HBZ. In this approach, the following constraint needs to be
imposed on the wave function for the line integral: Θ− 〉 = 〉k ku u| ( ) | ( )n n , where Θ is the time
reversal operator. The  = 12 state is topologically distinct from the  = 02 state, in that they
cannot be adiabatically connected to each other (through tuning some system parameter)
without closing the bulk gap. The  = 02 state is connected to the trivial vacuum, hence is the
trivial insulating state. The  = 12 state is nontrivial, and is known as the QSH state. It has an
odd number of Kramers pairs of helical edge channels that are protected by time reversal
symmetry.

It has been shown that the single layer Kane–Mele model with only intrinsic SOC is a
 = 12 QSH ground state. This phase persists with finite Rashba SOC as long as the bulk gap
does not close. With further increasing Rashba SOC, the gap finally closes and the QSH phase
is destroyed. For a bilayer Kane–Mele model with each layer being a  = 12 insulator, the
combined system is in fact trivial because + =1 1 0 (mod 2). The case of a bilayer model with

6 In this work, although we are not particularly concerned with specific materials for realizing the bilayer Kane–
Mele model, nevertheless we point out that, given the single layer Kane–Mele model could be achieved (e.g. in
Bi/Sb hydrides or halides), it is likely to realize the bilayer model by combining two such layers and engineering
the structure to achieve the desired weak coupling between them.
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only Rashba SOC has been studied before [35]. It has been found that under finite interlayer
potential U the Rashba SOC in fact helps to realize a QSH state.

When the intrinsic SOC comes into the play, from the previous discussion one expects that
it tends to drive the system into the trivial phase, hence it has a competition with the Rashba
SOC in the topological phase transition. Here we calculate the topological phase diagram
reflecting the competition between the two SOCs. The result is shown in figure 2 as functions of
tR and tI. The boundary between different topological phases corresponds to the states where the
conduction band and the valence band touch. The black lines in the diagram mark such band-
touching states. Here a finite interlayer potential U is taken to open a bulk gap initially and its
relevance to the topological metallic states will be discussed in a while. We observe that the
phase diagram is divided by the band-touching lines into three regions. As expected, for large tI,
when the intrinsic SOC dominates over the Rashba SOC, the system takes a  = 02 trivial
phase (the upper part labeled as region III). For the opposite case, when the Rashba SOC
dominates over the intrinsic SOC for large tR, the system takes a  = 12 QSH phase (the lower
right part labeled as regi on II). One notes that the band-touching lines separate out another
region at the lower left corner (region I) when both tI and tR are small, which also has  = 02 .
Although both I and III are trivial in terms of 2 classification, region I differs from III in the
valley Chern number. Strictly speaking, the Chern invariant (number) is defined only for a
closed manifold [9, 40],

∫∑
π

Ω= kk
1

2
d ( ), (4)

n

z
2

where the integral is usually over the Brillouin zone. Because Berry curvature is odd under time
reversal, the total Chern number must vanish in our present case. For a honeycomb lattice, the
Brillouin zone has a hexagon shape and the energy spectrum has two valleys K and ′K at the
corners of the Brillouin zone, where the Berry curvature Ωz is concentrated. In figure 3(b), we
plot a typical Berry curvature distribution in k-space. One observes that the curvature is peaked
around the valleys, and it has different signs between the K and ′K valleys. Therefore, one can
define a valley Chern number v as the difference between the integrals of the Berry curvature
around the two valleys. For the three regions in figure 2, we have = 4v for region I, = 2v for
region II, and = 0v for region III. The valley Chern number physically determines the

Figure 2. Phase diagram of the bilayer Kane–Mele model as a function of tR and tI. The
solid lines separate three phases with different topological invariants 2 and v. The
colored regions are the metallic states where the band gap closes indirectly. The
parameters used here are t = 1, U = 0.5, M = 0, and =⊥t 0.2.
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quantum valley Hall (QVH) conductance of the system [41–44]. Hence, region I corresponds to
a QVH phase while region III is valley Hall trivial.

What is more interesting about the present system is that we find there are extended
regions around the phase boundaries in which the states are in fact metallic. The global bulk gap
closes in the colored regions in figure 2. Because a metal does not have a stable ground state
against excitations, usually it does not permit a topological phase. At first sight, one might guess
that the colored area in region II is just a trivial metallic phase, for which a topological invariant
cannot be defined. However, we find that, although these states do not have a global bulk gap,
they do have a local bulk gap at every k-point in the Brillouin zone. In figure 3(a), we plot the
map of the local direct gap of such a metallic state. It shows that the local gap is always bigger
than zero. This means that the valence bands are still well separated from the conduction bands
and form an isolated manifold. They are adiabatically connected to the insulating state in each
region without closing the local bulk gap (band-touching), hence also share the corresponding
topological invariants.

We are most interested in the metallic states in region II. From the above argument, the
metallic states there should have  = 12 with spin helical edge channels, representing a 2D 2

Figure 3. (a) Map of direct energy gap in k-space, (b) Berry curvature distribution in the
Brillouin zone, and (c) the spectrum of a zigzag-terminated ribbon for a typical
2-metallic state corresponding to the marked point in the phase diagram figure 2 with

=t 0.3R and =t 0.06I . The colored points in (c) label the edge modes localized at
opposite boundaries, as schematically shown in (d) along with their spin polarizations.
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-metallic phase. In figure 3(c), we show the energy spectrum calculated for a zigzag-terminated
ribbon of the system, corresponding to the marked point in the phase diagram. We observe that
the band gap closes indirectly and there are edge states connecting the conduction band and the
valence band. Note that the topological property is a bulk property, which does not depend on
the edge termination. The helical edge states are present also for armchair and any other types of
edge. We analyze the spatial distribution and spin polarization of these edge states. The result is
plotted schematically in figure 3(d). From this figure, we can clearly observe that on each edge
there is one Kramers pair of spin helical edge states, as dictated by the  = 12 requirement. As
long as the time reversal symmetry is preserved, the two states on the same edge cannot be
mixed with each other. Because of the absence of a global band gap, these edge states coexist at
the same energy as bulk bands, hence they are not as robust as the edge states for QSH
insulators. However, since they do not overlap with the bulk bands in momentum, they could
still remain a sharp state against smooth scattering potentials.

Such a 2-metallic state is analogous to the 3D Sb crystal. It has been found that the band
gap of Sb also closes indirectly and its ground state has a nontrivial 3D 2 invariant [45].
Recent experiments on the 3D [Tl]MTe family also found similar phenomena [46]. There are
two differences. One is that the current 2-metallic state is realized in a 2D system. The other
one is its emergence here is a result of the competition between two types of SOC. As observed
from the phase diagram, it requires both tI and tR to have finite values. The unique feature of this
2-metallic state is the existence of topologically spin helical edge channels along with a
metallic bulk.

We also mention that the coexistence of spin helical edge states and the bulk bands at the
same energy could in fact be advantageous for engineering topological superconductivity. For
example, analogous to the proposal for the 3D case [47], if the bulk of a 2D 2-metal could
form a conventional s-wave superconductor then the induced pairing in spin helical channels
would turn the edge into an effective 1D +p ip superconductor [48].

Similar arguments apply to the metallic states in region I and region III as well. These
metallic states also maintain a local gap across the Brillouin zone. They are adiabatically
connected to the corresponding insulating states in each region, and hence share the topological
properties of these insulating states. Therefore, the colored area in region III is a trivial metallic
phase, while the colored region in region I is a QVH metallic phase.

In the calculation of the phase diagram (figure 2), we set a finite layer bias potential U. We
mention that, although there is no topological insulator phase (i.e. with a global bulk gap) when
U = 0 in this bilayer model [32–34], our 2 topological metal phase still exists. In this case, the
phase-I ( = 02 , = 4v ) disappears, which is consistent with previous results [35]. However,
the 2-metallic states still exist with local gaps due to the competition between the two SOCs.
The resulting 2-metallic state is similar to the topological semiconducting state recently found
in a single layer Kane–Mele–Hubbard model [50]. Therefore, the layer bias potential U is not
necessary for realizing the 2-metallic state. Here we choose to include a finite U because the
local gaps in the topological metal states could be more clearly observed. The adiabatic
transition between the 2-metallic state and topological insulator state also makes the
topological nature of these metallic states more obvious. Furthermore, a richer phase diagram
can be generated, with the QVH phase and with the inclusion of topological invariant v.
Different phases are distinguished by both topological invariants 2 and v. The 2-metal
phase here has both 2 invariant and v invariant. Therefore, the 2-metallic state is protected
by both time-reversal symmetry ( = 12 ) and valley separation ( = 2v ). This novelty of the
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topological protection from valley separation has not yet been mentioned, e.g. in the study of
the single-layer Kane–Mele model [49, 50]. This newly discovered 2 topological metallic state
hence exhibits features of both QSH and QVH systems.

4. Chern metallic phase

When time reversal symmetry is broken, the topological classification of a 2D insulator changes
from 2 to , characterized by the Chern number. The Chern number, given by the integral of
Berry curvature over the entire Brillouin zone, determines the number of chiral edge channels of
the system. For our bilayer Kane–Mele model, the time reversal symmetry is broken by a finite
M value, which generates a Zeeman spin-splitting. This term is introduced on a mean field level
and could be physically induced by magnetic dopants or the proximity effect from nearby
magnetic layers. [6] Here we set U = 0 so that the system preserves inversion symmetry.
Following the same methodology as in the previous section, we calculate the phase diagram
with respect to the parameters tR and tI. In figure 4, the phase boundaries, which are the band-
touching lines, separate the phase diagram into three regions. Region I in the lower left corner
with both tI and tR small is an insulating phase with Chern number = 2. In region II, tR

dominates over tI, and we have = 4. This is consistent with the previous observation that
= 2 for a single layer with only Rashba SOC. In region III, tI dominates over tR, and we have
= 0, indicating that it is a trivial phase.

If we analyze the spectrum of the system, we find that there are also extended areas in
region II and region III for which the global gap closes but a local direct gap is still maintained.
This is demonstrated in figure 5(a) for a typical case, in which one observes that the direct gap is
always positive throughout the Brillouin zone. Due to the presence of the local gap, the valence
bands are separated from the conduction bands. These metallic states are adiabatically
connected to the insulating states in the same region. The metallic states in region III are trivial,
while the metallic states in region II are topologically nontrivial.

Let us focus on the states in region II, which has a Chern number = 4. The adiabatic
connectivity means that the metallic state shares the same topological character as the Chern
insulator state: it also has chiral edge states and a Chern number can be defined for its valence
bands with = 4. We shall call these novel states Chern metals.

Figure 4. Phase diagram for the bilayer Kane–Mele model with time reversal symmetry
breaking. The solid lines separate three phases with different Chern numbers . The dot
marks a Chern metallic state. The parameters used for the calculations are t = 1,M = 0.1,
U = 0, and =⊥t 0.2.
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In figure 5(b), we show the Berry curvature distribution in k-space for the  metallic state
marked by the dot in the phase diagram. It is observed that the Berry curvature is concentrated
in each valley, and it has the same sign for different valleys, obeying the requirement from
inversion symmetry. In figure 5(c), we plot the energy spectrum of a ribbon geometry for the
Chern metallic state. We observe that the global bulk gap closes indirectly but the chiral edge
states still exist. We analyze the spatial distribution of these edge states and the result is shown
schematically in figure 5(d). On each edge, there are four channels propagating along the same
direction, as required by the Chern number = 4. The existence of chiral edge channels along
with a conducting bulk is the hallmark of this novel Chern metallic phase. Again because it is a
metallic state, the chiral edge states are not as robust as those in an insulating state. However,
since these edge states do not overlay with the bulk bands in momentum, they could still remain
sharp states against smooth disorder potentials. From the phase diagram figure 4, we see that its
appearance must require both tR and tI to have a finite value. Hence, like the 2-metallic state, it
is a result of the competition between the intrinsic SOC and the Rashba SOC.

Figure 5. (a) Direct energy gap, (b) Berry curvature distribution in the Brillouin zone,
and (c) the spectrum of a zigzag-terminated ribbon for a typical Chern metallic state as
marked in the phase diagram figure 4 with tR = 0.45 and tI = 0.09. The colored points in
(c) label the edge modes localized at opposite boundaries, as shown schematically
in (d).
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5. Summary

In this work, we have studied the topological phases of a bilayer Kane–Mele model in detail.
We find that the system exhibits a rich phase diagram as a result of the competition between the
intrinsic SOC and the Rashba SOC. In contrast to the single layer case, there emerge novel 2D
topological metallic phases that can be adiabatically connected to their topological insulator
counterparts. In the presence of time reversal symmetry, we find there is a 2-metallic phase
with nontrivial 2 invariant and spin helical edge states. When time reversal symmetry is
broken, there exists a Chern metallic phase with nontrivial Chern invariant and chiral edge
states. These findings broaden our knowledge of the topological states of matter. This also
shows that, by controlling the competition between different SOCs, one can tune the topological
phase and control both the bulk and edge conduction, which could be useful in applications
based on topological materials.
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